Pre-AP Chemistry - Unit 1 Chemical Math Practice Quiz

Objective 1: Students will show competency at conversions and calculations involving scientific measures and quantities. [NS.35.C.1]

Objective 2: Students will make and record scientific measurements with appropriate significant figures. [NS.35.C.2]

1. Perform the following conversions involving the metric system:
(a) $435.6 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{10^{9} \mathrm{~nm}}{1 \mathrm{~m}}=4.356 \times 10^{14} \mathrm{~nm}$
(b) $625 \mathrm{pm} \times \frac{1 \mathrm{~m}}{10^{12} \mathrm{pm}} \times \frac{10^{6} \mu \mathrm{~m}}{1 \mathrm{~m}}=.000625 \mu \mathrm{~m}$
(c) $125 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \times \frac{1000 \mathrm{~mm}}{1 \mathrm{~m}}=1250 \mathrm{~mm}$
2. Billy runs the 100 meters in 11.9 seconds. What is his speed in miles/hour?
$\frac{100 \mathrm{~m}}{11.9 \mathrm{~s}} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \times \frac{1 \text { mile }}{1.61 \mathrm{~km}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=20 \frac{\text { miles }}{\mathrm{hr}}$
3. Answer the following about molarity:
(a) Determine number of moles of NaCl in 2.75 L of a 0.62 M solution of salt water
$2.75 \mathrm{~L} \times \frac{.62 \mathrm{~mol}}{1 \mathrm{~L}}=1.7$ moles NaCl
(b) What mass of LiBr is needed to make 200 mL of a 0.35 M solution.

Molar mass of $\mathrm{LiBr}=6.941+79.904=86.845 \mathrm{~g} / \mathrm{mol}$
$200 \mathrm{~mL} \times \frac{1 L}{1000 \mathrm{~mL}} \times \frac{.35 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{86.845 \mathrm{~g}}{1 \mathrm{~mol}}=6 \mathrm{~g}$
(c) I need 15 grams of CaCl_{2} from a 0.025 M solution. How many milliliters of the solution should I measure out?

Molar Mass of $\mathrm{CaCl}_{2}=40.078+2(35.453)=110.98 \mathrm{~g} / \mathrm{mol}$
$\frac{15 \mathrm{~g}}{1} \times \frac{1 \mathrm{~mol}}{110.98 \mathrm{~g}} \times \frac{1 \mathrm{~L}}{.025 \mathrm{~mol}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=5.4 \times 10^{3} \mathrm{~mL}$
(d) If I take 45 g of KOH and add water to the volume of 750 mL . What is the molarity of my solution?
$\mathrm{M}=\frac{\mathrm{mol}}{\mathrm{L}} \quad \frac{45 \mathrm{~g}}{1} \times \frac{1 \mathrm{~mol}}{56 \mathrm{~g}}=.803 \mathrm{~mol} \quad \frac{750 \mathrm{~mL}}{1} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=.75 \mathrm{~L} \quad \mathrm{M}=\frac{\mathrm{mol}}{\mathrm{L}}=\frac{.803 \mathrm{~mol}}{.75 \mathrm{~L}}=1.1 \mathrm{M}$

Objective 2

4. Determine the number of significant figures in the following:
(a) 1234.4
5 sig figs
(b) .0001202
4 sig figs
(c) $12000 \quad 2$ sig figs
5. Answer the following using the correct number of significant digits.
(a) $100 \times 3.24=300$
(b) $0.00203 / 0.0000102=199$
(c) $0.012+1.3=1.3$
6. Determine the volume of the following box in cubic centimeters and liters with the proper number of significant figures.

$$
\begin{aligned}
& \mathrm{V}=\mathrm{I} \cdot \mathrm{w} \cdot \mathrm{~h}=5.11 \mathrm{~cm} \cdot 2.31 \mathrm{~cm} \cdot 1.12 \mathrm{~cm}=13.2 \mathrm{~cm}^{3} \\
& 1 \mathrm{~cm}^{3}=1 \mathrm{~mL} \\
& 13.2 \mathrm{~cm}^{3} \times \frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=.0132 \mathrm{~L}
\end{aligned}
$$

7. If the box above was really supposed to be a block of gold with a mass of 54.3 g then what is the density of the block (proper significant figures)? Is it really gold, if density of gold is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$?

Density of gold is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{D}=\frac{m}{v}=\frac{54.3 \mathrm{~g}}{13.2 \mathrm{~cm}^{3}}=4.11 \mathrm{~g} / \mathrm{cm}^{3}$
No it is not gold.
8. Explain the difference between accuracy and precision.

Accuracy is how close a measurement is to the true value. Precision is how consistent measurements are. Precision also speaks to how exact a measurement is. It is possible to be both or one but not the other.
9. Determine the moles of MgCl_{2} in 89.6 g of the compound.
$\frac{89.6 \mathrm{~g}}{1} \times \frac{1 \mathrm{~mol}}{95.21 \mathrm{~g}}=.941 \mathrm{~mol}$
10. Determine the number of formula units in $\left.4.5 \mathrm{~g} \mathrm{of} \mathrm{Ca(} \mathrm{NO}_{3}\right)_{2}$.

$$
\frac{4.5 \mathrm{~g}}{1} \times \frac{1 \mathrm{~mol}}{164 \mathrm{~g}} \times \frac{6.02 \times 10^{23} \text { formula units }}{1 \mathrm{~mol}}=1.6 \times 10^{22} \text { formula units }
$$

11. Determine the number of mole of gas present in 578 mL at STP.

$$
\frac{578 \mathrm{~mL}}{1} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}}=.0258 \mathrm{~mol}
$$

12. Determine the mass of CH_{4} present if there 8.6×10^{35} atoms of hydrogen in the sample. $\frac{8.6 \times 10^{35} \mathrm{atoms}}{1} \times \frac{1 \mathrm{~mol} \mathrm{H}}{6.02 \times 10^{23} \text { atoms }} \times \frac{1 \mathrm{~mol}}{4 \mathrm{~mol} \mathrm{H}} \times \frac{16 \mathrm{~g}}{1 \mathrm{~mol}}=5.7 \times 10^{12} \mathrm{~g}$
