\qquad
\qquad Date \qquad

12•The Gas Laws

BOYLE'S LAW

Boyle's Law states that the volume of a gas varies inversely with its pressure if temperature is held constant.
(If one goes up, the other goes down.) We use the formula:

$$
P_{1} \times V_{1}=P_{2} \times V_{2}
$$

Solve the following problems (assuming constant temperature). Assume all number are 3 significant figures.

1. A sample of oxygen gas occupies a volume of 250 mL at 740 torr pressure. What volume will it occupy at 800 torr pressure?
2. A sample of carbon dioxide occupies a volume of 3.50 Liters at 125 kPa pressure. What pressure would the gas exert if the volume was decreased to 2.00 liters?
3. A 2.00-Liter container of nitrogen had a pressure of 3.20 atm . What volume would be necessary to decrease the pressure to 1.00 atm ?
4. Ammonia gas occupies a volume of 450 mL as a pressure of 720 mmHg . What volume will it occupy at standard pressure $(760 \mathrm{mmHg})$?
5. A 175 mL sample of neon had its pressure changed from 75.0 kPa to 150 kPa . What is its new volume?
6. A sample of hydrogen at 1.50 atm had its pressure decreased to 0.50 atm producing a new volume of 750 mL . What was the sample's original volume?
7. Chlorine gas occupies a volume of 1.20 liters at 720 torr pressure. What volume will it occupy at 1 atm pressure?
8. Fluorine gas exerts a pressure of 900 torr. When the pressure is changed to 1.50 atm , its volume is 250 mL . What was the original volume?

Name
Period \qquad

12•The Gas Laws

CHARLES'S LAW
Charles' Law states the volume of a gas varies directly with the Kelvin temperature, assuming the pressure is constant. We use the following formulas:

$$
\begin{gathered}
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \quad \text { or } \quad \mathrm{V}_{1} \times \mathrm{T}_{2}=\mathrm{V}_{2} \times \mathrm{T}_{1} \\
\mathrm{~K}={ }^{\circ} \mathrm{C}+273
\end{gathered}
$$

Solve the following problems assuming a constant pressure. Assume all numbers are $\mathbf{3}$ significant figures.

1. A sample of nitrogen occupies a volume of 250 mL at $25^{\circ} \mathrm{C}$. What volume will it occupy at $95^{\circ} \mathrm{C}$?
2. Oxygen gas is at a temperature of $40^{\circ} \mathrm{C}$ when it occupies a volume of 2.30 Liters. To what temperature should it be raised to occupy a volume of 6.50 Liters?
3. Hydrogen gas was cooled from $150{ }^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Its new volume is 75.0 mL . What was its original volume?
4. Chlorine gas occupies a volume of 25.0 mL at 300 K . What volume will it occupy at 600 K ?
5. A sample of neon gas at $50^{\circ} \mathrm{C}$ and a volume of 2.50 Liters is cooled to $25^{\circ} \mathrm{C}$. What is the new volume?
6. Fluorine gas at 300 K occupies a volume of 500 mL . To what temperature should it be lowered to bring the volume to 300 mL ?
7. Helium occupies a volume of 3.80 Liters at $-45^{\circ} \mathrm{C}$. What volume will it occupy at $45^{\circ} \mathrm{C}$?
8. A sample of argon gas is cooled and its volume went from 380 mL to 250 mL . If its final temperature was $-55^{\circ} \mathrm{C}$, what was its original temperature?

Name
Period \qquad

12•The Gas Laws

THE IDEAL GAS LAW

| PV = nRT where |
| :--- | :--- |
| $\mathbf{P}=$ pressure in atmosphere |
| $\mathbf{V}=$ volume in liters |
| $\mathbf{n}=$ number of moles of gas |
| $\mathbf{R}=$ Universal Gas Constant $=\mathbf{0 . 0 8 2 1} \mathrm{L} \cdot \mathrm{atm} / \mathrm{mol} \cdot \mathrm{K}$ |
| $\mathbf{T}=$ Kelvin temperature |

1. How many moles of oxygen will occupy a volume of 2.50 liters at 1.20 atm and $25^{\circ} \mathrm{C}$?
\qquad
2. What volume will 2.00 moles of nitrogen occupy at 720 . torr and $20 .{ }^{\circ} \mathrm{C}$?
\qquad
3. What pressure will be exerted by 25.0 g of CO_{2} at temperature of $25^{\circ} \mathrm{C}$ and a volume of $500 . \mathrm{mL}$?
\qquad
4. At what temperature will 5.00 g of Cb exert a pressure of 900 . torr at a volume of $750 . \mathrm{mL}$?
\qquad
5. What is the density of NH_{3} at 800 . torr and $25^{\circ} \mathrm{C}$? \qquad
6. If the density of a gas is $1.2 \mathrm{~g} / \mathrm{L}$ at 745 torr and $20 .{ }^{\circ} \mathrm{C}$, what is its molar mass?
\qquad
7. How many moles of nitrogen gas will occupy a volume of 347 mL at 6680 torr and $27^{\circ} \mathrm{C}$?
8. What volume will 454 grams (1 lb) of hydrogen occupy at 1.05 atm and $25^{\circ} \mathrm{C}$?
\qquad
9. Find the number of grams of CO_{2} that exert a pressure of 785 torr at a volume of 32.5 L and a temperature of $32^{\circ} \mathrm{C}$. \qquad
10. An elemental gas has a mass of 10.3 g . If the volume is 58.4 L and the pressure is 758 torr at a temperature of $2.5^{\circ} \mathrm{C}$, what is the gas? \qquad
