Technical Chemistry: Gas Laws	Name:					
Match each example below with the appropriate gas property it illustrates.						
1. the fragrance of perfume sprea through the room						
 smog forms over Atlanta during summer days 	b. diffuses through other gases					
3. a cylinder of oxygen used in a hospital	c. exerts pressure					
4. the shrink wrap demonstration	d. fills container					
5. a balloon is inflated with helium	e. has mass					
6. a balloon filled with air weighs more than an empty balloon						
Match the variables used to describe gas	ses to the correct unit.					
7. kPa	a. pressure					
8. °C	b. temperature					
9. mL	c. volume					
10. K						
11. mm Hg						
12. atmospheres (atm)						
13. L						
14. °F						
Complete the following statements by wri	ting "decreases," "increases," or "remains the same"					
As a gas is compressed in a cylinder						
15. its mass						
16. the number of gas molecules						
17. its pressure						
18. its volume						
19. the distance between gas molecul						
20. its density						

21. Boyle's Law states that the pressure of a gas is inversely proportional to its volume. Explain that statement. (Include the correct formula and examples)

P	ro	h	le	m	c
	-	W	ľ	111	c

blen	ns				
21.	A 7.0 liter balloon at room carried outside to where the occupy?	temperature (22°C) contain he temperature is –3.0°C, w	is hydrogen gas. If the highest the base of the second sec	he balloon is	
22.	A 5.0 liter tank of oxygen available if the oxygen is	gas is at a pressure of 3 atnused at standard pressure?	n. What volume of o	xygen will be	
23.	A 500 liter volume of helicof 300K. What is the volu	um gas is at a pressure of 7 ume of the same gas at STP	50 mm Hg and has a	temperature	
24.	Nitrogen (80 kPa), oxyger kPa) are the usual atmost kPa?	n (21.0 kPa), carbon dioxide pheric components. What i	e (0.03 kPa), and wat s the total atmosphe	ter vapor (2.0 ric pressure	
Con	npete the following statem ecular theory by filling in th	ents about the nature of gar ne appropriate word (s) from	ses as presented in the list below.	the kinetic	
	etic energy ential energy	no force pressure	perfectly elastic random motion	weak zero	
25.	Gas particles exert		on one anoth	ner.	
26.	Gas molecules are said to	o be in	*		
27.	The volume of gas particles themselves is said to be				
	The collisions between ga				
29.	The temperature of a gas particles.	is a measure of the average	e	of the gas	

Pre-AP Chemistry: Select Gas Law Questions

BOYLE'S LAW

- 1. 1.00 Lot a gas at standard pressure (101 3kPa) is compressed to 4/3 rdL. What is the new pressure of the gas?
- 2. In a thermonuclear device, the pressure of 0.050 liters of gas within the bomb casing reaches 4.0 x 10° kPa. When the bomb casing is destroyed by the explosion, the gas is released into the atmosphere where it reaches a pressure of 250kPa. What is the volume of the gas after the explosion?
- 3. Synthetic diamonds can be manufactured at pressures of 6.00 x 10° kPa. If we took 2.00 liters of gas at 100 kPa and compressed it to a pressure of 6.00 x 10° kPa, what would the volume of that gas be?
- 1.0 x 10 inter sample of a gas at that pressure, then release the pressure until it is equal to 30kPa, what would the new volume of that gas be?

CHARLES' LAW

- 1. The temperature inside my refrigerator is about 281K. If I place a balloon in my fridge that initially has a temperature of 295K and a volume of 0.5 liters, what will be the volume of the balloon when it is fully cooled by my retrigerator?
- 2. A man heats a balloon in the oven. If the balloon initially has a volume of 0.4 liters and a temperature of 293K, what will the volume of the balloon be after he heats it to a temperature of 523K?
- 3. On hot days, you may have noticed that potato chip bags seem to "inflate", even though they have not been opened. If I have a 250 mL bag at a temperature of 263K, and I leave it in my car which has a temperature of 333K, what will the new volume of the bag be?
- 4. A soda bottle is flexible enough that the volume of the bottle can change even without opening it. If you have an empty soda bottle (volume of 2 L) at room temperature (25 C) and put it in your freezer overnight and find the volume of the bottle has become 1.81L, then how cold (°C) is your freezer?

COMBINED LAW

- That all notices gas at a pressure of 1200 day a columne of 23 literal and a frequentitie of 200 k, and then has the pressure to 1300 kha and increme the temperature for 100 k. What is the new volume of the gas?
- A gas takes up also ume of 10 liters has a pressure of 13000 hand a temperature of 2000 k. for raise the temperature to 350 k appropriation pressure to 15000 hand in the new 10 ume of the gas?
- 4 gas that has also ome of 28 liters, a temperature of this cland an unknown pressure him its value increased to 34 oters one its temperature decreased to this. If I measure the pressure after the change to be 200xPa what was the original pressure of the galary.
- A gas has a temperature of 29 fk, and a volume of A by the little temperature is invented to 302 k and the pressure is not changed $(P_1 = P_2)$, what is the new volume of the gas. Which ather gas is a could answer this?

IDEAL LAW

- fi have 4 moles of a gas at a pressure of 560 kPa and a volume of 12 liters, what is the temperature?
- filhate an unknown quantity of gas at a pressure of 120 kPa, a volume of 31 liters, and a temperature of 87°C, how many moies of gas do I have?
- ficontain 3 moles of gas in a container with a volume of 60 liters and at a temperature of 400 k, what is the pressure inside the container?
- 4. If i have 7.7 moles of gas at a pressure of 9 kPa and at a temperature of 56 °C, what is the volume of the container that the gas is in?
- filhave 17 moles of gas at a temperature of 67°C, and a volume of 88.89 liters, what is the pressure of the gas?