Pre-AP Chemistry - Unit 7, Gas Behavior

Objective 1: Students will understand the Kinetic Molecular Theory (KMT) for gases and use it to explain the following relationships: Boyle's Law, Charles' Law, Gay-Lussac's Law, and Avogadro's Law. [GL.16.C.1, GL.17.C.1]

Objective 2: Students will apply the combined gas law, ideal gas law, and Dalton's law to calculate the effects of pressure (P), temperature (T), volume (V), and number of moles (n) on a gas system and will apply the moles determined to stoichiometric calculations at non-standard conditions. [GL.16.C.2, GL.17.C.1, GL.18.C.1, S.12.C.3, S.12.C.4]

Objective 1

1. Define the following terms: kinetic energy, kinetic theory, gas pressure, vacuum, atmospheric pressure, barometer, pascal (Pa), standard atmosphere (atm), compressibility, diffusion, effusion, Boyle's law, Charles', Law, Gay-Lussac's law, Avogadro's law, Graham's law.
2. (a) State and explain Boyle's law using the kinetic theory of gases. (b) Determine the final pressure of a fixed quantity of gas originally at a 1.5 atm of pressure in a 2.5 L container at 256 K if the container is compressed to 0.75 L but the temperature remains 256 K . (c) What volume will the air in a 355 mL bag initially at a temperature of 300 K and a pressure of 315 kPa occupy if the pressure is reduced to 50 kPa while the temperature remains the same?
3. (a) State and explain Charles's law using the kinetic theory of gases. (b) Determine the volume of a fixed quantity of air originally at 485 K in a fixed pressure container with a volume of 4789 mL if the temperature is reduced to 200K. (c) Determine the temperature reached if 45.0 L of nitrogen gas in a balloon (constant pressure) at 298 K is compressed to 12L.
4. (a) State and explain Gay-Lussac's law using the kinetic theory of gases. (b) Determine the new pressure of a gas originally at $25^{\circ} \mathrm{C}$ and a pressure of 7.5 atm if the temperature is changed to $100^{\circ} \mathrm{C}$ and the volume is unchanged. (c) At what temperature, in ${ }^{\circ} \mathrm{C}$, will the pressure of a gas originally at 845 K and 6.3 atm reach a pressure of 1000 kPa assuming the volume remains the same?
5. (a) State and explain Avogadro's law using the kinetic theory of gases. (b) How would the addition of 5 moles of an ideal gas to a system under constant temperature and pressure affect the volume if there were originally 10 moles of gas occupying a volume of 4500 mL in an expandable container?

Objective 2

1. Define the following terms: combined gas law, ideal gas constant, ideal gas law, partial pressure, and Dalton's law of partial pressures.
2. Use the combined gas law to determine the changes in a system in the following scenarios.
(a) Determine the final pressure of a gas initially at $35^{\circ} \mathrm{C}$ in a 5.2 L container with a pressure of 3.5 atm if the container is compressed to half its original size and is heated to 400 K .
(b) A certain car tire has a volume of 50 L with a pressure of 300 kPa at a temperature of $23^{\circ} \mathrm{C}$ before a road trip. At the end of the trip the temperature has risen to 315 K and the pressure has changed to 3.9atm. What volume does the air in the tire now occupy?
(c) A certain explosive device has an initial volume of 2000L. If the device is detonated over land the pressure prior to explosion reaches 800 atm. After the explosion the gas returns to ambient pressure (101.3 kPa) and temperature (292 K). In the process the gas expands to occupy a volume of $10^{5} \mathrm{~L}$. What was the temperature, in degrees Celsius, inside the bomb case at the instant of explosion?
3. Use the ideal gas law to determine the changes in a system in the following scenarios.
(a) Determine the number of moles of gas in a 6.8 L container with a pressure of 5.2 atm that has a temperature of 600K.
(b) At what pressure would the volume of an expandable container at a temperature of $50^{\circ} \mathrm{C}$ with 85 g of nitrogen gas reach 100L?
(c) Find the temperature of a gas system constrained to a volume of 1758 mL if the pressure is measured as 85 kPa . The system contains 5.0 mol of gas.
(d) Find the mass of sulfur dioxide gas $\left(\mathrm{SO}_{2}\right)$ present in a 180 L drum at a temperature of $40^{\circ} \mathrm{C}$ and a pressure of 300 kPa .
4. (a) State and explain the idea behind Dalton's law of partial pressures. (b) A mixture of gases $(0.477 \mathrm{~mol} \mathrm{He}$, 0.280 mol Ne , and 0.110 mol Ar) is placed in a 7.00 L vessel at $25^{\circ} \mathrm{C}$. Find the partial pressure of each gas and the total pressure in the container. (c) If the total pressure in a sealed 15.0 L flask containing $45.2 \mathrm{~g} \mathrm{Xe}, 12.5 \mathrm{~g} \mathrm{O}_{2}$ and some hydrogen gas is 210 kPa at 300 K then what is the partial pressure of the hydrogen gas $\left(\mathrm{P}_{\text {hydrogen }}\right)$?
5. The following reaction is carried out in an expandable container under a constant pressure of 600kPa and the final temperature is determined to be $180^{\circ} \mathrm{C}$. Determine the volume of CO gas produced when 100 g of oxygen reacts with an excess of carbon.

$$
2 \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{~g})
$$

6. A certain gas system is constructed so that sulfur dichloride gas $\left(\mathrm{SCl}_{2}\right)$ can be combined with oxygen gas $\left(\mathrm{O}_{2}\right)$ to produce SOCl_{2}, according to the reaction below. A reactor is charged with $100 \mathrm{~g} \mathrm{SCl}_{2}$ and $25 \mathrm{~g}^{\text {of } \mathrm{O}_{2}}$.

$$
2 \mathrm{SCl}_{2}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SOCl}_{2}(\mathrm{~g})
$$

(a) If the system is initially in a reactor with a fixed volume of 100 L with a pressure of 4.6 atm, and a temperature of 500 K then which is the limiting reactant? (b) What is the theoretical yield of SOCl_{2} ? (c) If the temperature after the reaction has changed to 655 K , then what pressure in the reactor at that point is due to SOCl_{2} ?
7. Determine the volume of I_{2} gas produced from the following reaction given that the reaction occurs in an environment with a temperature of $600^{\circ} \mathrm{C}$ and the pressure after the reaction was determined to be 2.2 atm and there are 200 g of Gal_{3} present in the beginning.

$$
\mathrm{Gal}_{3}(\mathrm{~s}) \rightarrow \mathrm{Ga}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{~g})
$$

